一、酶的结构与功能的关系?
酶是一种蛋白质,也有部分是DNA。
酶的功能依赖于它的结构,主要是因为它的结构决定了对不同底物结合的亲和性,以及对底物进行处理的反应位点高度吻合性等。
其主要的生物学功能是:
(一)催化和调节能力某些蛋白质是酶,催化生物体内的物质代谢反应.某些蛋白质是激素,具有一定的调节功能,如胰岛素调节糖代谢、体内信号转导也常通过某些蛋白质介导.
(二)转运功能某些蛋白具有运载功能,如血红蛋白是转运氧气和二氧化碳的工具,血清白蛋白可以运输自由脂肪酸及胆红素等.
(三)收缩或运动功能某些蛋白质赋予细胞与器官收缩的能力,可以使其改变形状或运动.如骨骼肌收缩靠肌动蛋白和肌球蛋、白.
(四)防御功能如免疫球蛋白,可抵抗外来的有害物质,保护机体.
(五)营养和储存功能如铁蛋白可以储存铁.
(六)结构蛋白许多蛋白质起支持作用,给生物结构以强度及保护,如韧带含弹性蛋白,具有双向抗拉强度.
(七)其他功能如病毒和噬菌体是核蛋白,病毒可以致病.
二、蛋白质的分子组成(一)元素组成组成蛋白质分子的主要元素有碳、氢、氧、氮、硫.有些还含有少量磷或金属元素.各种蛋白质的含氮量很接近,平均为16%,且蛋白质是体内的主要含氮物,因此可以根据生物样品的含氮量推算出蛋白质的大致含量.
二、植物激素与动物激素的特点与功能?
植物激素定义:植物体内合成的对植物生长发育有显著作用的几类微量有机化合物。
已知有七类:脱落酸、植物生长素、细胞分裂素、乙烯、赤霉素、寡糖素和油菜固醇内酯。动物激素定义:动物的某些器官、组织或细胞所产生的一类微量但高效的调节代谢的化学物质。动物激素比较复杂,有脂质、多肽、固醇等等,植物就没那么复杂三、体液调节与激素调节的区别与联系?
二者之间的区别:参与调节的物质种类有区别,
参与体液调节的物质种类多,有激素,有代谢产物如二氧化碳,参与激素调节的物质只能是激素。
二者之间的联系:
体液调节包括激素调节,激素调节是体液调节的主要内容。
体液调节是指体液中的化学物质(如二氧化碳、激素等),通过体液运输,对生命活动进行的调节。如果参与体液调节的物质是激素,则是激素调节。
四、产物浓度与酶的关系?
酶越多产物浓度越高
酶活力指酶催化反应的能力,活力越高反应越快。但反应速度还与底物和产物的浓度有关,并非仅仅由酶活力决定。至于底物和产物浓度,还与反应时间有关。比如做酶切实验,一开始,酶活力最高,底物浓度也最高,反应速度最快,但产物浓度为零。然后随反应进行,产物积累,底物减少,酶部分失活,总活力下降,反应速度降低。
酶活力是瞬时值,要影响底物和产物浓度,需要时间。
一般情况下,我们认为酶活力是不变的。与底物浓度成正比的,是反应速度。每个酶都以固定速度催化,底物如果很多,所有的酶都在工作,反应就达到最大速度;底物浓度下降,就有一些酶空闲下来,反应速度降低。如果没有补充,底物不断消耗,反应速度就越来越低。所以反应速度与底物浓度成正比。
至于酶活力与底物浓度,如果不补充底物,酶活力越高,底物消耗就越快,底物浓度就越低。
五、rna聚合酶与引物酶的关系?
它们相互识别后,以引物为起点开始转录合成rna。
六、酶反应初速度与酶浓度的关系?
底物对酶促反应的饱和现象:由实验观察到,在酶浓度不变时,不同的底物浓度与反应速度的关系为一矩形双曲线,即当底物浓度较低时,反应速度的增加与底物浓度的增加成正比(一级反应);
此后,随底物浓度的增加,反应速度的增加量逐渐减少(混合级反应);
最后,当底物浓度增加到一定量时,反应速度达到一最大值,不再随底物浓度的增加而增加(零级反应)。
七、土壤酶与土壤生命的关系?
土壤酶与土壤生命 关系 就像是水与鱼的关系
八、激素和酶的区别表格?
1,成分不同:
①酶:绝大部分是蛋白
②激素:不全是蛋白质
2,来源不同:
①酶:所有活细胞都能产生
②激素:由内分泌细胞分泌
3,作用不同:
①酶:生物催化剂
②激素:调理生理活动
九、生物各种酶的名称与功能?
1.DNA聚合酶:
在DNA复制中起作用,是以一条单链DNA为模板,将单个脱氧核苷酸通过磷酸二酯键形成一条与模板链互补的DNA链,形成链与母链构成一个DNA分子。
2.解旋酶:
作用于氢键,是一类解开氢键的酶,由水解ATP来供给能量它们常常依赖于单链的存在,并能识别复制叉的单链结构。
在细菌中类似的解旋酶很多,都具有ATP酶的活性。大部分的移动方向是5′→3′,但也有3′→5′移到的情况,如n′蛋白在φχ174以正链为模板合成复制形的过程中,就是按 3′→5′移动。在DNA复制中起作用。
3.DNA连接酶:
其功能是在两个DNA片段之间形成磷酸二酯键。
如果将经过同一种内切酶剪切而成的两段DNA比喻为断成两截的梯子,那么,DNA连接酶可以把梯子的“扶手”的断口处(注意:不是连接碱基对,碱基对可以依靠氢键连接),即两条DNA黏性末端之间的缝隙“缝合”起来。
据此,可在基因工程中用以连接目的基因和运载体。
与DNA聚合酶的不同在于:不在单个脱氧核苷酸与DNA片段之间形成磷酸二酯键,而是将DNA双链上的两个缺口同时连接起来,因此DNA连接酶不需要模板。
4.RNA聚合酶:
又称RNA复制酶、RNA合成酶,作用是以完整的双链DNA为模板,边解放边转录形成mRNA,转录后DNA仍然保持双链结构。
对真核生物而言,RNA聚合酶包括三种:RNA聚合酶I转录rRNA,RNA聚合酶Ⅱ转录mRNA,RNA聚合酶Ⅲ转录tRNA和其她小分子RNA。
在RNA复制和转录中起作用。
5.反转录酶:
为RNA指导的DNA聚合酶,催化以RNA为模板、以脱氧核糖核苷酸为原料合成DNA的过程。
具有三种酶活性,即RNA指导的 DNA聚合酶,RNA酶,DNA指导的DNA聚合酶。
在分子生物学技术中,作为重要的工具酶被广泛用于建立基因文库、获得目的基因等工作。在基因工程中起作用。
6.限制性核酸内切酶(简称限制酶):
限制酶主要存在于微生物(细菌、霉菌等)中。
一种限制酶只能识别一种特定的核苷酸序列,并且能在特定的切点上切割DNA分子。是特异性地切断DNA链中磷酸二酯键的核酸酶(“分子手术刀”)。发现于原核生物体内,现已分离出100多种,几乎所有的原核生物都含有这种酶。是重组DNA技术和基因诊断中重要的一类工具酶。
例如,从大肠杆菌中发现的一种限制酶只能识别GAATTC序列,并在G和A之间将这段序列切开。目前已经发现了200多种限制酶,它们的切点各不相同。苏云金芽孢杆菌中的抗虫基因,就能被某种限制酶切割下来。在基因工程中起作用。
7.纤维素酶和果胶酶:
植物细胞工程中植物体细胞杂交时,需事先用纤维素酶和果胶酶分解植物细胞的细胞壁,从而获得有活力的原生质体,然后诱导不同植物的原生质体融合。
8.胰蛋白酶:
在动物细胞工程的动物细胞培养中,需要用胰蛋白酶将取自动物胚胎或幼龄动物的器官和组织分散成单个的细胞,然后配制成细胞悬浮液进行培养。或用于细胞传代培养时将细胞从瓶壁上消化下来。
9.淀粉酶:
主要有唾液腺分泌的唾液淀粉酶、胰腺分泌的胰淀粉酶和肠腺分泌的肠淀粉酶,可催化淀粉水解成麦芽糖。
10.麦芽糖酶:
主要有胰腺分泌的胰麦芽糖酶和肠腺分泌的肠麦芽糖酶,可催化麦芽糖水解成葡萄糖。
11.脂肪酶:
主要有胰腺分泌的胰脂肪酶和肠腺分泌的肠脂肪酶,可催化脂肪分解为脂肪酸和甘油。肝脏分泌的胆汁乳化脂肪形成脂肪微粒后,有利于脂肪分解。
12.蛋白酶:
主要有胃腺分泌的胃蛋白酶和胰腺分泌的胰蛋白酶,可催化蛋白质水解成多肽链。作用结果是破坏肽键和蛋白质的空间结构。
13.肽酶:
由肠腺分泌,可催化多肽链水解成氨基酸。
14.转氨酶:
催化蛋白质代谢过程中氨基转换过程。
如人体的谷丙转氨酶(GPT),能够把谷氨酸上的氨基转移给丙酮酸,从而形成丙氨酸和a—酮戊二酸。
由于谷丙转氨酶在肝脏中的含量最多,当肝脏病变时谷丙转氨酶就大量释放到血液,因此临床上常把化验人体血液中这种酶的含量作为诊断是否患肝炎等疾病的一项重要指标。
15.光合作用酶:
是指与光合作用有关的一系列酶,主要存在于叶绿体中。
16.呼吸氧化酶:
与细胞呼吸有关的一系列酶,主要存在于细胞质基质和线粒体中。
17.ATP合成酶:
指催化ADP和磷酸,利用能量形成ATP的酶。
18.ATP水解酶:
指催化ATP水解形成ADP和磷酸,释放能量的酶。
19.组成酶:
指微生物细胞中一直存在的酶。它们的合成只受遗传物质的控制,如大肠杆菌细胞中分解葡萄糖的酶。
20.诱导酶:
指环境中存在某种物质的情况下才合成的酶,如大肠杆菌细胞中分解乳糖的酶。
十、激素调节的特点?
其特点为:
1. 微量高效:激素是少量化学物质,但能产生显著生理效应,对人体的生命活动至关重要。
2. 通过血液传递:激素通过弥散到血液中,并随血液运输到全身,作用于选择的靶器官或细胞。
3. 特异性作用:激素具有特异性,通过血液作用于各种靶器官或细胞,调节其代谢,而非提供能量或催化作用。
- 相关评论
- 我要评论
-